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We examine the spreading of a liquid on a solid surface when the liquid surface has
a spread monolayer of insoluble surfactant, and the surfactant transfers through the
contact line between the liquid surface and the solid. We show that, as in surfactant-
free systems, a singularity appears at the moving contact line. However, unlike
surfactant-free systems, the singularity cannot be removed by the same assumptions
as long as surfactant transfer takes place. In an attempt to avoid modelling difficulties
posed by the question of how the singularity might be removed, we identify parameters
which describe the dynamics of the macroscopic spreading process. These parameters,
which depend on the details of the fluid motion next to the contact line as in the
pure-fluid case, also depend on the state of the spread surfactant in the macroscopic
region, in sharp contrast to the pure-fluid case where actions at the macroscopic
scale did not affect material spreading parameters. A model of the viscous-controlled
region near the contact line which accounts for surfactant transfer shows that, at
steady state, some ranges of dynamic contact angles and of capillary number are
forbidden. For a given surfactant–liquid pair, these disallowed ranges depend upon
the actual contact angle and on the transfer flux of surfactant.

We also examine a possible inner model which accounts for the transfer via surface
diffusivity and regularizes the stress via a slip model. We show that the asymptotic
behaviour of this model at distances from the contact line large compared to the
inner length scale matches to the viscous-controlled region. An example of how the
information propagates is given.

1. Introduction
During the last 20 years many experimental and theoretical investigations have

been devoted to the identification of predictive models for the spreading dynamics of
single-component, isothermal fluids (Dussan V. 1979; de Gennes 1985; Kistler 1993).
By contrast, the spreading of surfactant-laden liquids has received little attention by
modellers. In this paper we address the spreading dynamics of an immiscible liquid–
gas system advancing or receding on a solid in the presence of an insoluble surfactant.
The spreading dynamics of surfactant-laden fluids differs from that of pure fluids in
two ways. First, the surface tension is coupled to the flow through its dependence on
surfactant concentration on the free surface. In addition, the surfactant can transfer
from the interface onto the solid or vice versa. We will show that accounting for
this transfer raises a non-trivial modelling issue. However, in spite of this difficulty, it
is possible to identify parameters which describe the macroscopic dynamic interface
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shape and the surface tension. In this section we review results for single-component
systems, discuss how the presence of surfactants alters the physics of the displacement
process, and conclude with modelling issues raised by the surfactant transfer.

1.1. Pure liquids

It is well known that when a Newtonian, incompressible fluid displaces another
immiscible fluid across a rigid solid, a non-integrable stress appears at the moving
contact line if the no-slip condition is enforced at the solid (Huh & Scriven 1971).
From these assumptions (called collectively here ‘the usual model’ or ‘the usual
assumptions’), and without invoking linear momentum conservation, Dussan V. &
Davis (1974) showed that a quantity, proportional to the force exerted by the fluid
on the solid, must be unbounded. Consequently, this singularity cannot be removed
by introducing any additional forces (e.g. van der Waals), and arises whenever the
usual model is applied. The boundary value problem that results from this model
is in fact ill-posed because the contact line singularity prevents one from using the
contact angle as a boundary condition for the interface shape. This implies that
new, unique mechanisms must replace the usual model very near the contact line.
This idea led investigators to postulate the presence of an ‘inner’ region with length
scale Li, where these new mechanisms replace the usual assumptions, and an ‘outer’
or macroscopic region where the usual assumptions control the flow, scaled by the
characteristic length of the flow, Lo. Since no suppositions have been made about the
nature of the interface, these ideas apply to both pure and surfactant-laden fluids.
Surprisingly, however, most of the work on contact line dynamics has focused on
pure-fluid systems.

In the case of pure fluids, the ‘inner’ region next to the contact line has been exam-
ined both at the molecular and continuum levels. A number of molecular dynamics
simulations have probed the nature of the boundary condition for a liquid in contact
with a solid, under a variety of flow scenarios. Koplik, Banavar & Willemsen (1988),
Thompson & Robbins (1990) and Hadjiconstantinou (1999) among others examined
immiscible fluid displacement in simple flow geometries. Their results indicate that, in
a two- to three-molecule distance from the contact line, the ‘fluid’ adjacent to the solid
violates the no-slip condition. Newer molecular dynamics simulations by Thompson
& Troian (1997) show that, given a fluid–solid pair, no-slip prevails at ‘low’ shear
rates, γ̇; slip∼ γ̇ at moderate γ̇; and, at higher shear rates slip becomes nonlinear
in γ̇. Finally, the ratio slip/γ̇ diverges as (γ̇ − γ̇c)p (p < 0) at a critical shear rate γ̇c.
Continuum fluid mechanics analyses, on the other hand, cannot provide information
about the nature of the boundary condition at the solid. Instead, they allow one
to examine how the boundary value problem can be made well-posed by relaxing
any of the usual assumptions. The most popular approach (adopted, for example by
Hocking 1977; Dussan V. 1976; Huh & Mason 1977; Hocking & Rivers 1982; Sheng
& Zhou 1992; and Finlow, Kota & Bose 1996 among many others) has been to relax
the no-slip condition at the solid. However, allowing slip is by no means the only
way of generating a well-posed boundary value problem. For example, Rosenblat &
Davis (1985), Weidner & Schwartz (1994) and Voinov (1994) have assumed that the
fluid becomes shear-thinning near the contact line.

The dynamic contact angle controls the spreading dynamics and the interface shape
of pure fluids at low capillary number Ca(≡ Uµ/σ, where U is the spreading velocity,
µ the viscosity and σ the surface tension). In this regime, the inner-region parameters
influence the dynamics through a single measurable parameter, ω0, which depends on
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Li and the actual, inner contact angle, Θi, through

gpure(ω0) = gpure(Θi) + Ca ln(Lo/Li), (1.1)

where

gpure(x) ≡
∫ x

0

2 sin u

u− sin u cos u
du.

The identification and measurement of ω0 has been the object of extensive analytical
and experimental work by Hansen & Toong (1971), Kafka & Dussan V. (1979), Cox
(1986a), Ngan & Dussan V. (1989), Dussan V., Ramé & Garoff (1991), Marsh, Garoff
& Dussan V. (1993) and Chen, Ramé & Garoff (1995). As a result, the boundary
condition for the macroscopic interface shape near the moving contact line of a pure
fluid can be formulated as

θ ∼ g−1
pure(gpure(ω0) + Ca ln(r/Lo)) + f0(r/Lo;ω0)− ω0 as r/Lo → 0. (1.2)

Here, g−1
pure(gpure(x)) = x, θ is the slope of the interface relative to the solid, r is the

distance from the contact line to a point on the interface, and f0 denotes a static
interface shape with contact angle ω0 (refer to figure 1). Since ω0 may be found at
each Ca by fitting equation (1.2) to an experimentally measured interface shape very
near the contact line, this approach does not necessitate knowledge of the physics in
the inner region (see Chen et al. 1995).

1.2. Surfactants

Surfactants, which preferentially reside on the interface rather than in the bulk phases,
affect both static (Adamson 1967) and dynamic wetting (Cox 1986b; Joanny 1989;
Chesters & Elyousfi 1998). One of their more obvious effects is that they change
the surface tension and the contact angle; however, these effects do not introduce
any fundamental modelling difficulty besides perhaps the increased complexity of
the analysis. The process that does introduce a non-trivial modelling difficulty is the
transfer of surfactant from (to) the liquid surface to (from) the solid, found, for exam-
ple, in Langmuir–Blodgett depositions but absent in the spreading of pure liquids. As
expected, a stress singularity, similar to that in the pure-fluid case, reappears. How-
ever, this time the singularity cannot be removed by the same means as in pure fluids.
Below we review the literature on spreading of surfactant-laden systems and discuss
the additional modelling complications that arise when surfactants are present.

Spread monolayers of insoluble surfactants attracted the attention of surface
chemists as a way to alter the outermost atomic layer of a solid, and hence change its
surface properties. Langmuir (1920) and Blodgett (1935) found that a monomolecular
layer of an insoluble surfactant (a fatty acid) spread on the surface of a liquid can
transfer to a glass slide that is repeatedly immersed and withdrawn into and from the
liquid. Behaviours during immersion and withdrawal may be vastly different. Lang-
muir (1920) and Blodgett (1935) observed moving contact lines during immersion;
and Langmuir (1938) documented the presence of contact lines during withdrawal.
However, Petrov, Kuhn & Möbius (1980) and Petrov (1986) found that there is a
maximum speed of withdrawal, characteristic of each system, above which the contact
line remains pinned to the solid. When this happens, instead of a moving contact line,
a thin film of entrained liquid forms between the solid and the surfactant monolayer.
This behaviour also appears in surfactant-free systems, but the fates of the respective
entrained fluid layers differ (see e.g. Petrov & Sedev 1985; Sedev & Petrov 1991). In
this paper we focus on situations where a well-defined contact line exists and surfac-
tant transfers between the interface and the solid. Thus, we address advancing and
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Figure 1. (a) Coordinate system used in the analysis of the intermediate region. Depending on the
molecular interactions of the surfactant with the solid, liquid and vapour: (b) surfactant spread on
the interface is deposited onto the solid–liquid surface during advance, and surfactant adsorbed
on the solid–liquid surface may return to the interface during recession; (c) surfactant spread on
the interface is deposited onto the solid–vapour surface during recession, and surfactant adsorbed
on the solid–vapour surface may return to the interface during advance. Filled circles represent
surfactant molecules.

receding motions far from the entrainment limit, with surfactants which are reactive
enough to stick to the solid ‘instantaneously’ on the time scale of the flow, and which
transfer from (onto) the interface onto (from) the solid; refer to figure 1.

Damania & Bose (1986) studied experimentally the effect of surfactant solutions
on the spreading behaviour of liquids. They looked at shapes of dynamic menisci in
a moving vertical flat plate for both pure fluids and surfactant systems. They showed
that, when Ca < 10−4, pure liquids form dynamic menisci whose shape is described
well by the static theory. Under these conditions, the force exerted on the plate after
correcting for buoyancy comes only from surface tension. This indicates that, at
least in the region examined, viscous forces do not affect the shape of the interface
nor do they exert a measurable drag on the plate. However, when surfactants are
present, the force does not correspond to that of surface tension at the equilibrium
surfactant concentration, and static theory cannot describe the shape, even at the
small values of Ca where this was true in their surfactant-free systems. They also
observed transient forces and meniscus shapes both with and without spreading. They
interpreted these observations in terms of the relative transport of surfactant into
the contact line via diffusion–convection, and away from it by adsorption on the
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solid surface. Thus, soluble surfactants may transfer to the solid via dissolution in
the bulk and readsorption to the solid from solution. It may be then possible for an
‘almost insoluble’ surfactant to transfer to the solid within a very small region near
the contact line where solubility becomes important (see § 1.3).

At the continuum theory level, Cox (1986b) addressed the fluid mechanics of a
spreading liquid with an insoluble surfactant in the special case where surfactant
does not transfer onto the solid. His main objective was to establish how material
information propagates from the inner to the outer region to form the macroscopic
contact-angle boundary condition. Cox recognized that, when surfactants are present,
a singularity appears at the contact line just as in the pure fluid case, but did
not address the removal of the singularity. Instead, he assumed that it had been
removed by some suitable inner mechanism such as slip. Perhaps coincidentally, a slip
condition alone is sufficient to describe an adequate inner region in the zero-transfer
case examined by Cox but not in the more general case with surfactant transfer. In
fact, slip removes the singularity by making the fluid velocity relative to the contact
line equal zero at the contact line. This fact prevents convective transfer of surfactant
through the contact line which leads to the apparent contradiction, discussed in § 1.3,
that if slip removes the singularity, surfactant cannot transfer by convection alone at
the contact line.

Joanny (1989) examined the dynamics of spreading during deposition of a
Langmuir–Blodgett film. In his formulation the chemical potentials of the surfac-
tant are known in terms of the surfactant concentration on the solid and on the
interface. This knowledge would allow one to compute the flux of surfactant mapped
onto the solid. Using the lubrication approximation, Joanny focuses on the structure
of the precursor film that precedes the spreading of the bulk liquid in systems where
long-range (van der Waals) forces are important, and derives power laws for the
velocity dependence of an apparent contact angle. Though Joanny recognizes that a
force singularity still arises at the tip of the precursor film (see § 1.3), his assertion that
van der Waals forces resolve the singularity by making the film intersect the solid at
90◦ at the tip is not at all obvious. In fact, Dussan V. & Davis (1974) have shown in a
general way that, regardless of the nature of the forces acting on the fluid, the drag of
a Newtonian liquid on the solid diverges at the contact line. Joanny, finally, addresses
systems in which the surfactant concentration deposited on the solid is smaller than
the concentration on the interface next to the solid (that is, the transfer ratio < 1).
This limitation is imposed by the lubrication approximation. In our study, a transfer
ratio of 1 is not special from a modelling standpoint as the transfer ratio merely
provides an initial value for the interface velocity.

Troian, Herbolzheimer & Safran (1990) showed that when a droplet of a surfactant
solution spreads on a thin layer of pure solvent, a Marangoni-driven instability
develops at the edge of the drop which is mathematically similar to that arising
in immiscible fluid displacement in a Hele-Shaw cell. Chesters & Elyousfi (1998)
analysed the advancing motion of a surfactant-laden meniscus in a capillary tube
with surfactant transfer onto the solid. The model exhibits interesting dynamics.
In particular, a given distribution of surfactant concentration on the meniscus may
coexist with multiple macroscopic contact angles depending on the time history of
the meniscus concentration.

1.3. The singularity in surfactant-laden systems

Spread insoluble surfactants show a rich variety of behaviour. Depending on the
materials, the surfactant may remain on the interface without being mapped onto the
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solid (i.e. the interface is immobile as in Cox 1986b) or it may transfer to the solid
at varying rates. The transfer may occur during the liquid-advancing cycle only, or
during the liquid-receding cycle only, or during both (refer to figure 1). In any case,
the interface is endowed with a surface velocity controlled primarily by the relative
affinities of the solid and the interface for the surfactant molecules. In the remainder
of this section we examine the modelling difficulty associated with the fluid motion
in the vicinity of a moving contact line when the surfactant transfers through the
contact line, and consider ways of generating a well-posed boundary value problem.

Consider an immiscible gas–liquid pair in contact with a planar solid surface. In a
reference frame fixed at the moving contact line, the solid velocity U is constant and
parallel to its surface. Without loss of generality, we assume: (a) the gas has negligible
viscosity, so we ignore its motion; (b) the liquid does not diffuse through the gas nor
does it adsorb onto the dry solid so that a hydrodynamic liquid layer does not exist
ahead of the spreading body; and (c) the motion is steady and two-dimensional. For
unsteady motions, the flow in a small region near the contact line of characteristic
length R may be treated as quasi-steady as long as the time scale of the unsteadiness
is large compared with the time scale for flow in the region under consideration, R/U
(Cox 1986a, b).

In the absence of surface diffusion, the local mass flux of surfactant on the interface
is ΓuΓ , where uΓ is the mass-averaged velocity on the interface and Γ is the surface
concentration. In the frame of reference fixed at the contact line, uΓ is wholly tangent
to the interface. When surfactant transfers directly onto the solid, ΓuΓ 6= 0 at the
contact line. Since Γ is bounded, uΓ must be tangent to the interface and 6= 0 at the
contact line. On the other hand, the velocity of fluid points adjacent to the solid must
be wholly tangent to the solid. Therefore, the velocity field must be multivalued at the
contact line as long as surfactant transfers directly by convection through the contact
line. Since all known slip models regularize the stress by making the velocity at the
contact line uCL = 0, slip would prevent the transfer. This leads to the contradiction
that, if slip removes the singularity, then convective surfactant transfer cannot take
place. In order to resolve this contradiction, some other inner mechanism(s) must be
present besides slip which can account for the transfer and be consistent with slip.

Examples of inner mechanisms that could account for surfactant transfer include
surface diffusion and modelling the surfactant as ‘almost insoluble’. Alternatively,
one might postulate the existence of a ‘surface phase’ of finite – albeit very small
– thickness, to which the surfactant is confined. This phase would most likely be
anisotropic, having a constitutive nature different from that of the fluid; therefore, an
infinite force need not arise. Both surface diffusion and finite-thickness surface phase
could amount to effective slip at the interface. None of these alternatives has yet
been thoroughly explored, though Ramé (1988) briefly discussed models applied to
surfactant systems and Shikhmurzaev (1993, 1997) has developed extensively surface-
phase models for pure fluids.

Inner models affect the details of the flow only on a very small inner length
scale Li about the contact line.† Regardless of these details, inner-region parameters
have a significant impact on the macroscopic behaviour of a spreading fluid only
through the dynamic contact angle when Ca � 1. For pure fluids, equation (1.2)
shows that, when Ca� 1, the interface shape near the contact line can be expressed

† Li is small compared to the macroscopic scale but must be large enough for continuum theory
to apply. Previous analyses for pure fluids have assumed thate Li is of molecular dimension, i.e.
between 10 Å and 1000 Å (see e.g. Hocking & Rivers 1982 and Cox 1986a).
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as θ ∼ F1(C + Ca ln r) + F2(C + Ca ln(Lo), r/Lo). The material constant C , depends
on inner-region parameters through C = gpure(Θi) − Ca ln(Li). This form has been
shown to be independent of the inner model for a wide range of slip boundary
conditions. Consequently, it is C and not the particular inner model that controls the
macroscopic interface shape through the parameter ω0 = g−1

pure(gpure(C + Ca lnLo)),
where ω0 is defined in equation (1.2).

Since C (or ω0) can be determined experimentally by macroscopic measurements,
it is thus possible, when Ca � 1, to parameterize the macroscopic flow without
addressing the flow in the inner region. This fact is crucial because discovering inner
mechanisms does not seem likely at the present time. On the one hand, due to its
extremely small length scale, there have not been direct probings of the inner region
which successfully shed light on the physics of the displacement process there. On the
other hand, the dependence of C on inner parameters through a single expression
independent of the inner model suggests that it is impossible to look into the physics of
the inner region using macroscopic measurements of C . Nevertheless, it is possible to
parameterize macroscopic spreading dynamics. Experiments on the spreading of pure
fluids showed the presence of a region, approximately located at 10 µm < r < 300 µm
from the contact line, where the interface slope, θ, is a dynamic material property
independent of the macroscopic geometry and given by equation (1.2). This portion
of the interface shape contains material information which describes the dynamics
of the macroscopic spreading process (Dussan V. et al. 1991). Motivated by this
approach, and since for most practical applications the dynamics of the outer region
are of primary interest, we will seek a macroscopic parametrization of the spreading
dynamics of surfactant-laden systems which does not rely on knowledge of inner
models.

Specifically, we seek the apparent or macroscopic dynamic contact angle in terms
of a suitably defined Ca, constants characterizing the interface shape and surface
tension, transfer rate of surfactant, and the surfactant equation of state. In the
next section we address the model and problem formulation. We will show that the
surfactant management strategy in the macroscopic region does affect the dynamics
of the interface (and thus the dynamic contact angle) in the viscous region near
the moving contact line. By matching to a macroscopic region in the small-Ca
limit, in § 3 we identify the apparent contact angle for the macroscopic interface
shape. Matching to the inner region yields a complete set of conditions to integrate
the equations governing the interface shape and surfactant concentration. We then
examine the dynamic behaviour of the apparent contact angle for various transfer
rates of surfactant at steady macroscopic concentrations, and derive approximate
closed-form expressions for the contact angle in terms of properties defined in the
inner region. We conclude by discussing in § 4 a possible inner model, developed
within the lubrication approximation, which accounts for surfactant transfer via
surface diffusivity. This model may be used to examine how surface tension and
interface velocity information is transmitted outwards to the viscous, non-diffusing
region.

2. Formulation and solution
We are interested in the case when surface tension and viscous forces balance at

lowest order near the contact line under conditions of Ca � 1 and ε ≡ Li/Lo � 1.
To capture this balance we must have η ≡ −Ca ln(ε) = O(1) as Ca→ 0. In this limit
the inner and outer regions are connected by an intermediate region where significant
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viscous effects are present. Here we follow the method developed by Hocking &
Rivers (1982) and Cox (1986a, b) for analysing the intermediate region.

It is assumed that some suitable mechanism has removed the stress singularity in
the inner region. Though the exact nature of this mechanism is not important for
now, the interface shape must behave like

θ ∼ Θi + Ca{H(Θi) ln(r/Li) + li(Θi)}, Θi 6= 0, (2.1a)

θ ∼ (ACa ln(r/Li))
1/3, Θi = 0, (2.1b)

as r/Li → ∞ independently of the inner mechanism. Here Θi is the actual contact
angle found at the scale of the inner region, li(Θi) and A depend on the inner physics,
H(θ) is known and independent of the inner model, and r is the (dimensional) distance
from the contact line to a point on the free surface. In general, Θi may depend on the
dimensional spreading velocity, U, and surfactant concentration next to the contact
line, ΓCL. The outer region lies far from the contact line. As r/Lo → 0 in the outer
region, the interface shape behaves as

θ ∼ ω0 + Ca{H(ω0) ln(r/Lo) + lo(ω0)}, (2.2)

where ω0 (defined in equation (1.2)) and lo(ω0) must be determined by matching.

Our analysis focuses on the intermediate region of expansion where the flow obeys
the usual hydrodynamic model and is not influenced by the macroscopic geometry.
We define the following scales: u ∼ |U|, r ∼ Lo, p ∼ σ∗/Lo, σ ∼ σ∗, Γ ∼ Γ ∗. Here U
is the velocity of the contact line relative to the solid and U > 0 denotes advancing
motion; Γ ∗ and σ∗ will be identified below. In what follows, the variables u, p, r, σ
and Γ must be considered dimensionless unless otherwise noted.

The geometry of the intermediate region resembles a wedge with a slowly varying
aperture; refer to figure 1. The choice of independent variable, ξ ≡ Ca ln(r), ensures
that the dependent variables vary slowly with r. Further, −η < ξ < 0 and r =
exp(ξ/Ca), so that, for ξ fixed with Ca� 1, it follows that ε� r � 1 exponentially
in Ca. Next we identify the scales σ∗ and Γ ∗.

2.1. Scales for σ and Γ

Since Γ and σ are related through the equation of state for the spread monolayer, it
is only necessary to identify the scale Γ ∗. Without loss of generality, we examine the
following thought experiment. An operator controls the concentration of a spread
surfactant monolayer in the outer (or macroscopic) region by means of a barrier
deployed on the interface. By moving the barrier, the operator can affect the concen-
tration not only in the outer but also in the inner and intermediate regions. Since the
dynamic contact angle Θi may depend on the surfactant concentration at the contact
line, it follows that, in systems with surfactants, a mechanism exists for information
to be passed from the outer back to the intermediate and inner regions. This is a
remarkable departure from pure-fluid systems where Θi is typically assumed to be
strictly a consequence of the local dynamics near the moving contact line (Ngan &
Dussan V. 1989) and cannot be affected by actions in the outer region.

Despite this inner–outer feedback loop, the concentration in the outer region
decouples from that in the intermediate and inner regions to lowest order as Ca→ 0.
This is because the inner and intermediate regions are exponentially small as Ca→ 0
and the surface concentration is bounded. Consequently, it is possible to control the
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surfactant concentration in the outer region independently of the mass inventory in
the inner and intermediate regions. We therefore consider only the mass in the outer
region. Because viscous effects are zero to lowest order as Ca→ 0 in the outer region,
surface tension and concentration are independent of position at this order. Under
these conditions, and neglecting surface diffusion of surfactant adsorbed on the solid,
mass conservation for the surfactant in the outer region, valid at O(1) as Ca → 0
requires

Mini − ΓsUt = Γ (t)L(t), (2.3)

where all variables are dimensional, Mini is the initial mass on the interface per
unit length of the contact line, Γs is the surfactant concentration on the solid as it
passes the contact line, t is time, L is the interface length covered with surfactant
and ΓsU is the (convective) flux of surfactant carried by the solid. Using the scales,
L → Lo,† t → Lo/U, and choosing Γ ∗ ≡ Mini/(LoLini), with Lini the dimensionless
initial interface length, equation (2.3) is non-dimensionalized:

Lini − Γst = Γ (t)L(t). (2.4)

Γs is known as the ‘transfer ratio’ in the Langmuir–Blodgett literature.
During a typical monolayer transfer, the surface concentration may be held constant

by a suitable motion of the barrier used to confine the spread monolayer. Alternatively,
the barrier position may be held fixed so that the surface tension increases/decreases in
time as transfer of surfactant to/from the solid lowers/raises the surface concentration.
At leading order as Ca→ 0, the laws governing the barrier motion needed to hold the
surface tension constant and the time rate of change of the surface tension when the
barrier is held fixed can be derived from equation (2.4). From the scaling just defined,
it follows that Γ = 1 at t = 0. When the outer surface tension is held fixed, the
barrier motion that keeps Γ (t) = 1 for t > 0 is L(t) = Lini−Γst. When the monolayer
length L is fixed, the barrier does not move but Γ changes with time according to
Γ (t) = 1−Γst/Lini. These examples of control protocols in the outer region set up the
matching condition for the surface tension in the intermediate region (see equations
(3.4) and (3.5)).

2.2. Governing equations and boundary conditions

We use polar coordinates (r, φ) centred at the contact line. The interface location is φ =
β(r) and the solid (assumed flat) is at φ = 0; refer to figure 1. The governing equations
are the conservation of linear momentum and mass for a Newtonian, incompressible
fluid, subject to the usual boundary conditions of continuity of velocity at solid
boundaries and continuity of stress, velocity and surfactant mass at the free surface.
With the scalings defined above, the dimensionless parameters are We = ρU2Lo/σ

∗,
Bd = ρgL2

o/σ
∗ and Ca = Uµ/σ∗. Since r � 1, we may neglect gravity and inertia,

and assume the flow to be planar and two-dimensional. We may then define a stream
function which satisfies the biharmonic equation and may be written as ψ = rg(φ, ξ).
The dependence of g on ξ captures the slow variation with r introduced by the
non-constant interface angle. The velocity components are then

u = ∂g/∂φ, v = −(g + Ca ∂g/∂ξ).

Expressions for the pressure, stress, and normal and tangential velocities can also be
derived, and boundary conditions may be written for g(φ, ξ) (Cox 1986b).

† If a solid plate is immersed in a large liquid bath on Earth, Lo is the capillary length (σ/ρg)1/2

where g is the acceleration due to gravity.
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Surface tension depends on surface concentration through an equation of state.
When this equation is linearized about and made dimensionless by (σ∗, Γ ∗), it is

σ − 1 = γ(Γ − 1), (2.5)

where γ ≡ (dσ/dΓ )∗(Γ ∗/σ∗). Since surfactant can transfer through the contact line,
we need to allow for a non-zero surfactant flux at the interface. As discussed in
§ 1.3, convective transfer at the contact line gives rise to a singularity that cannot be
removed if surfactant transfers only by convection. (In § 4 we illustrate how surface
diffusivity can be used to generate a well-posed problem.) However, transport in
the intermediate region is mainly convective provided the surface Péclet number
ULo/Ds � 1, Ds being the surface diffusivity. If we assume steady state,† the mass
flux on the interface must equal the surfactant flux carried by the solid, i.e. the
solid takes away (supplies) all the surfactant leaving (entering) the free surface. Thus,
conservation of surfactant mass requires that

Γs = −Γuτ = constant, (2.6)

where Γs is defined in equation (2.3), and uτ = u · τ is the velocity component tangent
to the interface with the unit tangent vector τ pointing away from the contact line.
In our convention Γs > 0 corresponds to surfactant being deposited onto the solid,
i.e. uτ < 0. If surfactant were to leave the solid and return to the interface, then
uτ > 0 and Γs < 0 (see figure 1b, c). Equation (2.6) evaluated at the edge of the inner
region is a mass balance around the contact line with the inner region excised. In
this model, all the surfactant entering the inner region on the free surface is taken
away convectively by the solid (see e.g. Chesters & Elyousfi 1998). To complete the
problem, the integral balance for the surfactant mass is

Lini − Γst =

∫ L(t)

0

Γ (s, t) ds. (2.7)

We now state the leading-order boundary value problem as Ca→ 0 as in Cox (1986b).

2.3. Lowest-order problem

It is assumed that, in the limit Ca→ 0 with Ca ln(ε) = O(1), the generic independent
variable, V , has an asymptotic expansion:

V (φ, ξ;Ca, Γs) ∼ V0(φ, ξ;Γs) + O(Ca).

In what follows we will omit the subscript 0 with the understanding that all the
variables are the leading terms of this asymptotic expansion. The governing equation
for g(φ, ξ) is (

∂2

∂φ2
+ 1

)2

g = 0. (2.8a)

The kinematic boundary condition at the solid reduces to

g = 0,
∂g

∂φ
= ±1 on φ = 0, (2.8b, c)

with the plus and minus signs denoting advancing and receding liquid, respectively.
The kinematic condition, and normal and tangential stress balances on the free surface

† Even if the outer region is not in steady state it is possible, since Li � Lo, for the inner region
to look quasi-steady so that equation (2.6) will hold (see Cox 1986a, b).
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are, respectively:

g = 0,
dβ

dξ
=

1

σ

[
∂g

∂φ
+
∂3g

∂φ3

]
,

dσ

dξ
=
∂2g

∂φ2

(all evaluated at φ = β(ξ).) (2.8d, e, f)

Finally, surfactant mass conservation, equation (2.6), requires

∂g/∂φ = uτ(= −Γs/Γ ) on φ = β(ξ). (2.8g)

When Γs = 0, surfactant does not transfer and we recover the problem analysed by
Cox (1986b). The function g(φ, ξ) results from the solution to equation (2.8a) with
boundary conditions (2.8b–d, g) The surface tension and concentration are related
through the equation of state (2.5). The interface shape and surface tension result
from integrating (2.8e, f) with appropriate boundary conditions to be derived by
matching in § 3.

2.4. Solution

Even though the whole problem is nonlinear, the equations governing g(φ, ξ) form a
linear problem driven by the unit velocity of the solid at φ = 0, and by the tangential
velocity of the free surface, uτ(= −Γs/Γ ). Although uτ is a function of ξ, this variable
acts as a parameter because ∂ng/∂ξn does not appear in the boundary value problem
(2.8a–d, g). It is therefore possible to decompose g as

g = g1 + uτg2, (2.9)

where g1 and g2 satisfy the same governing equation and boundary conditions as g,
except that ∂g1/∂φ = 0 on φ = β(ξ); and ∂g2/∂φ = 1 on φ = β(ξ), ∂g2/∂φ = 0 on
φ = 0. The function g1 corresponds to the no-transfer case:

g1 = ±φ sin β sin(φ− β) + β(β − φ) sinφ

β2 − sin2 β
(2.10a)

and

g2 =
β sin β(sinφ− φ cosφ)− φ sinφ(sin β − β cos β)

β2 − sin2 β
. (2.10b)

In order to obtain the interface shape, β(ξ), and the surface tension, σ(ξ), we must
solve the coupled equations (2.8e, f). For consistency with (2.9), we rewrite these
equations as

dβ

dξ
=

1

σ
(f1(β) + uτf2(β)),

dσ

dξ
= h1(β) + uτh2(β), (2.11a, b)

where

f1(β) =
∂g1

∂φ
+
∂3g1

∂φ3

∣∣∣∣
φ=β

=
±2β sin β

β2 − sin2 β
, f2(β) =

∂g2

∂φ
+
∂3g2

∂φ3

∣∣∣∣
φ=β

=
2 sin2 β

β2 − sin2 β
.

h1(β) =
∂2g1

∂φ2

∣∣∣∣
φ=β

= ±2
sin β − β cos β

β2 − sin2 β
, h2(β) =

∂2g2

∂φ2

∣∣∣∣
φ=β

=
2β − sin 2β

β2 − sin2 β
,

Since uτ = −Γs/Γ and Γ = 1 + (1 − σ)/γ, equations (2.11) cannot be integrated
in closed form. Boundary conditions for numerical integration will be derived by
matching to the outer and the inner regions.
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2.5. Limit of small transfer ratio, Γs � 1

In order to study analytically the influence of surfactant transfer rate on the surface
tension and interface shape, we expand the zeroth order of the Ca-expansion in
powers of Γs, valid for Γs → 0:

σ ∼ σ0 + Γsσ1 + · · · ,
with analogous expressions for Γ and β. Substitution in equation (2.11) generates
problems at O(1) and O(Γs). In this limit, σ and β decouple at lowest order:
O(1):

dσ0

dξ
= h1(β0),

dβ0

dξ
=

1

σ0

f1(β0). (2.12a, b)

If we divide (2.12a) by (2.12b), the resulting equation can be integrated exactly:

σ0 = Kσ0

β0

sin β0

, Γ0 = 1 + (σ0 − 1)/γ, (2.13a, b)

where Kσ0 is an integration constant. The interface shape is given implicitly by the
integral of equation (2.12b), which, after substitution of the solution for σ0, becomes

ξ +Kθ0 = Kσ0G0(β0), (2.14)

where

G0(β0) ≡ ±
∫ β0

0

β2 − sin2 β

2 sin2 β
dβ, (2.15)

and Kθ0 is another integration constant. These results follow from Cox (1986b) when
the viscosity of the displaced phase is zero (λ = 0 in Cox’s notation).
O(Γs):

dβ1

dξ
= − 1

σ0

f2(β0)

Γ0

− σ1

σ2
0

f1(β0) +
1

σ0

df1

dβ

∣∣∣∣
β0

β1 (2.16a)

dσ1

dξ
= −h2(β0)

Γ0

+
dh1

dβ

∣∣∣∣
β0

β1. (2.16b)

It is simpler to continue using β0 as the independent variable, so we divide through
by equation (2.12b):

dβ1

dβ0

= − 1

Γ0

f2(β0)

f1(β0)
− σ1

σ0

+
β1

f1(β0)

df1

dβ

∣∣∣∣
β0

(2.17a)

dσ1

dβ0

=
σ0

f1(β0)

[
−h2(β0)

Γ0

+
dh1

dβ

∣∣∣∣
β0

β1

]
. (2.17b)

These coupled ordinary differential equations are not solvable in closed form. How-
ever, a two-term series solution valid for β0 � 1 gives reasonable quantitative and
good qualitative agreement in the whole range of β0 for the small Γs tested. It is
easily shown that

σ1 ∼ ±5
Kσ0

KΓ0

+Kσ1

[
1 +

β2
0

18

]
as β0 → 0, (2.18a)

β1 ∼ −β0

(
± 2

KΓ0

+
Kσ1

3Kσ0

)
as β0 → 0, (2.18b)
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where Kσ1 is a constant and KΓ0 ≡ 1+(Kσ0−1)/γ. Boundary conditions for equations
(2.11a, b) and the values of Kθ0, Kσ0, Kσ1 will be found below by matching.

3. Results and discussion
Our results fall into two categories, which may be loosely termed ‘modelling’ and

‘dynamic behaviour’. First, in the modelling category, we derive boundary conditions
for equations (2.11) by matching the intermediate region solution to the solutions
in the outer and inner regions. To address the most general case possible, we first
perform the match for arbitrary transfer flux, Γs. Since this case only admits numerical
solutions, it cannot be used to extract the dependence of the macroscopic contact
angle on material properties describing the inner region. To derive analytic forms for
this dependence, we also perform the match in the limit of Γs → 0 using a regular
perturbation approach. Second, once the boundary conditions for (2.11) are known
from matching, we examine the dynamic behaviour of the macroscopic contact angle
as a function of Ca and ε for a range of transfer fluxes. The results show that surfactant
transfer introduces a rich dynamic behaviour, not observed in either no-transfer or
surfactant-free systems.

3.1. Matching in the case of arbitrary Γs

As is standard practice, we write the intermediate solution in Taylor series as Ca→ 0
holding r fixed:

β ∼ β|ξ=0 +
f

σ

∣∣∣∣
ξ=0

Ca ln r, σ ∼ σ|ξ=0 + h|ξ=0Ca ln r. (3.1a, b)

This has to match the outer solution as r → 0:

θout ∼ {ω0(Γs) + O(r)}+ O(Ca), σout ∼ σm0(t;Γs) + O(Ca). (3.2a, b)

Briefly, the outer solution is static to O(1) as Ca→ 0 because viscous effects are zero
at this order. It follows that the interface has a static-like shape and that the surface
tension (and therefore Γ ) must be uniform on the free surface. Consequently, σm0 is at
most a function of time. The outer, static shape would intersect the solid with contact
angle ω0, which is largely determined by the intermediate-region hydrodynamics. This
leads to behaviour (3.2) as r → 0 (Cox 1986b; Dussan V. et al. 1991). From (2.4) and
the equation of state (2.5) we can derive expressions for σm0(t;Γs); for example, in the
case of ‘steady outer region’,

σm0(t;Γs) = 1, (3.3)

whereas for ‘fixed interface length’,

σm0(t;Γs) = 1− γΓst/Lini. (3.4)

In general, however, σm0(t;Γs) may follow any arbitrary time dependence.
Comparing (3.1) with (3.2), and recalling that θ ∼ β + Ca dβ/dξ, we deduce initial

conditions

σ = σm0(t;Γs), β = ω0(Γs) at ξ = 0. (3.5a, b)

Similarly, matching the intermediate solution to the inner-region solution (see Cox
1986a, b) gives boundary conditions for the intermediate region at the edge of the
inner region:

σ = σi, β = Θi at ξ = −η (≡ Ca ln(Li/Lo)),
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where Θi and σi are the leading-order contact angle and surface tension in the inner
region as Ca→ 0. These conditions allow one to integrate equations (2.11a, b). Once
these equations are solved, we can construct a uniformly valid composite solution for
the interface shape:

θ ∼ β(Ca ln r;Γs) + f0(r;ω0, σm0(t))− ω0, (3.6)

where f0(r;ω0, σm0) denotes a static interface shape with contact angle ω0 as in
equation (1.2).

3.2. Matching in the case Γs � 1

The intermediate solution, expanded for small Γs as in § 2.4,

β − {β0 + Γsβ1 + O(Γ 2
s )}+ O(Ca), σ ∼ {σ0 + Γsσ1 + O(Γ 2

s )}+ O(Ca), (3.7a, b)

must match the following outer expressions, obtained by expanding (3.2) asymptoti-
cally as Γs → 0 and valid as r → 0:

θout ∼ {ω00 + Γsω01 + O(Γ 2
s ) + O(r)}+ O(Ca), (3.8a)

σout ∼ {σm00(t) + Γsσm01(t) + O(Γ 2
s )}+ O(Ca), (3.8b)

and the following inner limiting forms as r/ε→∞:

θi ∼ {Θi,00 + ΓsΘi,01 + O(Γ 2
s )}+ O(Ca), σi ∼ {σi,00 + Γsσi,01 + O(Γ 2

s )}+ O(Ca).

(3.8c, d)

Since Θi = Φ(U,ΓCL) ∼ {Θi,00 + ΓsΘi,01 + O(Γ 2
s )} and ΓCL ∼ {Γi,00(t) + ΓsΓi,01(t) +

. . .} + O(Ca) as Γs → 0 in the inner region, we obtain Θi,00 ≡ Φ(U,Γi,00) and
Θi,01 ≡ ∂Φ/∂ΓCL|U,Γi,00

Γi,01.
From equations (3.3) and (3.4) we deduce σm00(t) = 1, and either σm01(t) = 0 for a

steady outer region, or σm01(t) = −γt/Lini for a fixed spread surfactant area (provided
Γsγt/Lini � 1).

Matching at each order in Γs gives
O(1):

Outer–intermediate G0(ω00) = Kθ0/Kσ0, Kσ0 =
sinω00

ω00

, (3.9a, b)

Inner–intermediate Kσ0G0(Θi,00) = Kθ0 + Ca ln(Li/Lo), Kσ0 =
sinΘi,00

Θi,00

σi,00,

(3.9c, d)

where we have used the expressions for β0 and σ0 given in (2.13) and (2.14).
O(Γs):

Outer–intermediate β1(ω00) = ω01, σ1(ω00) = σm01(t). (3.10a, b)

Inner–intermediate β1(Θi,00) = Θi,01, σ1(Θi,00) = σi,01. (3.10c, d)

This shows that, to lowest order in Ca, and for Γs � 1, the outer interface is still
static with contact angle equal to ω00 + Γsω01. Thus, the apparent dynamic contact
angle receives an extra contribution, Γsω01, owing only to the fact that surfactant
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transfer is turned on. This contribution comes from the extra fluid motion which the
transfer drives in the intermediate region.

3.3. Relationship between the matching constants appearing in the general and in the
Γs � 1 cases

Using (2.18a, b) it is straightforward to show that

σ|ξ=0 = 1 + Γs

[
±5

Kσ0

KΓ0

+Kσ1

(
18 + ω2

00

18

)]
, (3.11a)

ω0 = ω00

{
1− Γs

[
± 2

KΓ0

+
Kσ1

3Kσ0

]}
. (3.11b)

In order to find the dependence of Kσ0, Kσ1, ω00, ω01 on ω0, we iterate by first
assuming ω00 = ω0. Then we evaluate

Kσ0 = sinω00/ω00, Kσ1 =

[
σm01 ∓ 5

Kσ0

KΓ0

]
18

18 + ω2
00

from equations (2.18a) and (3.10b), where KΓ0 ≡ 1 + (Kσ0 − 1)/γ. The final step is to
update

ω00 = ω0

{
1− Γs

[
± 2

KΓ0

+
Kσ1

3Kσ0

]}−1

from (2.18b). ω01 may be found from ω0 = ω00 + Γsω01.

3.4. Identifying parameters controlling the outer region

In order to identify how inner parameters determine macroscopic quantities, we
examine a situation where the material properties, Θi(U,ΓCL), σ(Γ ) and ε are known,
and Γs has been measured (see § 3.7). Knowledge of these material properties, Ca,
and the user-defined protocol for controlling the surface tension in the outer region
is sufficient to determine the problem. We restrict our attention to Γs � 1 because
this case has an analytic approximate solution valid when β → 0 which allows us to
extract explicit relations between the inner parameters and macroscopic quantities.

Using the results (3.9) and (3.10) of the match of the intermediate with the inner
and the outer regions, and assuming that the angles, Θi,00, ω00, are small, it is easy to
show that at O(1)

G0(Θi,00) = G0(ω00) +
1

Kσ0

Ca ln ε, (3.12a)

1

σm00

ω00

sinω00

=
1

σi,00

Θi,00

sinΘi,00

. (3.12b)

Three additional relations are needed to determine all the variables: the equation
of state, which we use to relate σi,00 to Γi,00, equation (3.9b), namely Kσ0 = sinω00/ω00,
and the constitutive relation Θi,00 = Φ(U,Γi,00). Results (3.12) had been obtained by
Cox (1986b), but his interpretation differs from ours.

The leading behaviour of G0 as ω00 → 0 is G0(ω00) ∼ ω3
00/18. This implies that, when

surfactant does not transfer, and as long as the surface tension in the outer region is
held constant (implying that Kσ0 does not change with time), the apparent dynamic
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contact angle behaves as ω3
00 +const ∼ 18Ca, not too different from ω3

0 +const ∼ 9Ca
for the surfactant-free case.†

At O(Γs):

G0

[
Θi,01

±2/KΓ0 +Kσ1/3Kσ0

]
= G0

[
ω01

±2/KΓ0 +Kσ1/3Kσ0

]
− Ca ln ε, (3.13a)

σm01 = ±5
Kσ0

KΓ0

+Kσ1

[
1 +

ω2
00

18

]
, σi,01 = ±5

Kσ0

KΓ0

+Kσ1

[
1 +

Θ2
i,00

18

]
. (3.13b, c)

Since KΓ0 = 1 + (Kσ0 − 1)/γ from equation (2.5), σm01 is known from the outer
solution, and Θi,01 is assumed known, equations (3.13) determine ω01, σi,01, Kσ1. Thus,
(3.12) and (3.13) show that, when the transfer occurs, the macroscopic interface
depends on ω0 = ω00 + Γsω01, through the parameters:

G0(Θi,00)− 1

Kσ0

Ca ln ε, G0

[
Θi,01

±2/KΓ0 +Kσ1/3Kσ0

]
+ Ca ln ε. (3.14a, b)

These parameters are modulated by information coming from the outer region via
σm01(t). Thus, in a manner equivalent to the surfactant-free case, the macroscopic
interface shape depends on Θi and Ca ln ε through the apparent contact angle ω00 +
Γsω01. However, here the inner contact angle Θi depends on the concentration at the
contact line, ΓCL, which in turn depends on the outer surface concentration σm0(t).
This information feedback from the outer region through σm0(t) did not appear in
the pure-fluid problem.

3.5. Advancing contact angle vs. Ca

3.5.1. Θi = 38◦

We now integrate equations (2.11a, b) using the boundary conditions derived in
§ 3.1 and for given γ and Γs. We assume that the contact angle Θi is a known material
property, and that the surface tension is controlled in the outer region as discussed
in § 2.1. Therefore, our boundary conditions are

β = Θi at ξ = −η and σ = σm0(t) at ξ = 0.

The chief result is the apparent contact angle ω0, i.e. the slope at ξ = 0; and less
importantly, the surface tension at ξ = −η. The equations are integrated as an initial
value problem using a fourth-order Runge–Kutta method. Since the equations are
autonomous, we may fix the origin of ξ arbitrarily. Thus, we define the auxiliary
integration variable ξ′ ≡ ξ + η and start the integration at ξ′ = 0 with β = Θi and
an assumed σ = σi. We integrate until σ = σm0(t), at which point ξ′ = η and β = ω0.
If the condition σ = σm0(ω0) cannot be met, we choose another initial σi until a
map is built of permissible initial values σi. We illustrate the case with Θi = 38◦ at
steady state, which requires a constant outer surface tension, σm0(ω0) = 1. We chose
γ = −100 as a typical value, corresponding to an almost ‘solid’ monolayer.

Before discussing the behaviour of the apparent dynamic contact angle, we note
that multiple solutions are possible for certain Γs > 0 (i.e. surfactant transfers from
the interface onto the solid). Figure 2 shows that there are two possible solutions to
this boundary value problem, each having a different inner surface tension σi = σ(−η).

† This leading behaviour of G0 is accurate to within 2% only for ω00 < 30◦. This limits the
applicability of this scaling law to very small Ca. For comparison, consider that in the surfactant-free
case the corresponding leading behaviour gpure(ω0) ∼ ω3

0/9 is accurate to within 2% for ω0 < 120◦.
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Figure 2. Interface slope (a) and surface tension (b) in the intermediate region, for two values of
σi, and Γs = 0.97. Both solutions have the same macroscopic contact angle of about 131◦, attained
where the surface tensions equal 1; and the same inner contact angle, Θi = 38◦. This happens for
pairs (σi, η): (14, −6.53) and (8, −4.75). For transfer rates above a critical value, a given system can
exhibit two solutions satisfying the same boundary conditions.

In one of the solutions, the interface slope increases monotonically, whereas in the
other it has a minimum near the inner region. As a result, two branches of ω0 vs. η
appear, both of which satisfy the outer condition σ(0) = 1. Thus, a given apparent
contact angle appears at two different values of η.

Motivated by this observation, we calculate maps of ω0 vs. η at several transfer
fluxes, Γs > 0. Figure 3(a, b) shows the dependence of ω0 and σi upon Ca ln ε. For
each pair {σi, Ca ln ε}, the conditions at ξ = 0 (i.e. at the edge of the outer region)
are β = ω0 and σ = 1. Before continuing with the discussion, we note that the lines
that reach 180◦ do so at Ca = ∞. This is an artifact caused by our neglect of the
motion of the displaced phase. This neglect is a good approximation for viscosity
ratios µgas/µliq � 1 but only for ω0 6= 180◦, for then the stresses in the displaced phase
are indeed negligible. However, as the displaced phase is squeezed against the solid
(i.e. when β ∼ 180◦), the stresses in that phase are no longer negligible, signalling the
presence of a singular limit when µgas/µliq → 0 and β → 180◦. Cox (1986b) solved the
problem with µgas/µliq 6= 0, but only for zero surfactant transfer; for a displaced phase
of finite viscosity, he showed that the apparent contact angle attains 180◦ at Ca finite.
As µgas/µliq decreases, the solution with µgas/µliq = 0 breaks down at β progressively
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Figure 3. Advancing apparent contact angle (a) and inner surface tension (b) vs. η = −Ca ln ε for
the values of Γs > 0 marked. Surfactant moves from the interface onto the solid. A viscous fluid
displaces a passive gas phase. Θi = 38◦.

closer to 180◦ (or equivalently, at progressively larger Ca). Based on Cox’s result, we
can safely assume that our theory is good for β � 180◦; and when β ∼ 180◦, the
apparent contact angle should reach 180◦ at Ca = Ca180(Γs) with Ca180 increasing as
µgas/µliq → 0.

The behaviour of surfactant systems with transfer is much more complex than
that of surfactant-free or no-transfer surfactant systems. In these simpler cases, ω0

vs. Ca ln ε is a unique, single-valued function for each Θi, given by equation (1.1) for
pure fluids and by equation (1.1) with gpure replaced by G0 from equation (2.15) for
surfactants with no transfer.

As expected, surfactant systems at low transfer rates behave similarly to the no-
transfer system. Their two most salient features appear at higher finite transfer rates:
(i) above a certain Γs, two branches develop, implying that the same apparent contact
angle will be seen at two different Ca for a given material system. Or, conversely, for
a fixed Ca, the same apparent contact angle will be seen for two different macroscopic
lengths, Lo. The implied hysteresis suggests that the apparent contact angles in the
higher branch might be observed during increasing Ca, whereas those in the lower
branch might be observed during decreasing Ca. We expect that our results should
remain valid as long as ω0 is not too close to 180◦. (ii) as the transfer rate increases
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further, the two branches close before reaching 180◦; here our theory should remain
valid for all ω0. Thus, for Γs & 0.97, apparent contact angles ω0 & 144◦ will not be
observed, no matter how high Ca. Taking the case Γs = 0.97 for illustration, we note
that ω0 reaches a maximum at Ca = Ca∗ (point A in figure 3). At Ca > Ca∗, the
steady solutions with dω0/dCa < 0 are likely to be unstable, so that increasing Ca
beyond Ca∗ would put the system on the (stable) lower branch of the curve where
dω0/dCa > 0 (point B). Increasing Ca will evolve the system along the lower branch
towards point C, where a further increase in Ca will fail to yield a steady flow. If Ca
decreases having started on the higher branch at Ca < Ca∗ (i.e. to the left of A), the
system will slow down along the higher branch. If the system had jumped to B, a
decrease in Ca will slow the system down along the lower branch until it reaches the
end point D, where a further decrease in Ca will not evolve a new steady solution.
It is not clear whether the system will jump to point E and follow a sequence of
steady solutions along the upper branch to Ca = 0, or continue to evolve through
a set of unsteady flows. The hysteresis suggested by the steady calculations may be
extended to unsteady flows by using σm > 1 to account for the depletion of the
surface concentration by surfactant deposition. It remains to determine whether or
not the non-uniqueness found here and that predicted in Chesters & Elyousfi’s (1998)
calculations of flow in a capillary tube are part of the same phenomenon.

3.5.2. Θi = 0

In anticipation of our analysis of the inner region using the small-slope approxi-
mation, to be presented in § 4, here we discuss the dynamics of the intermediate region
for Θi = 0. This value of Θi is required for matching to any inner model based on
the lubrication approximation because the slope of any ‘small slope’ inner region is
always zero when viewed from the outer length scale.

Figure 4(a, b) shows that the striking difference from the caseΘi = 38◦ is the absence
of multiple solutions for a given contact angle. However, a similarity is still present
in that, above a certain Γs, the range of available ω0 is reduced. When Γs & 0.91, the
range of contact angles delivered by the inner region shrinks monotonically until it
vanishes at Γs = 1. The dashed line in figure 4(a) is an attempt to show this shrinking
trend: to the right of this line no steady solutions exist. At Γs = 1, the only point in
parameter space for which a steady solution exists is {ω0 = 0, η = 0, σ = 1}, but this
solution yields an interface shape of ‘zero measure’.

We note that, when Θi = 0, the surface tension, interface shape and surface velocity
are approximately described by

∂σ

∂ξ
∼ 2

β
(1 + 2ui) + 4u1 + · · · , (3.15a)

∂β

∂ξ
∼ 6

σiβ2
(1 + ui) +

6

σ2
i β

[σiu1 − σ1(1 + ui)] + · · · , (3.15b)

∂uτ

∂ξ
= −uτ

Γ

1

γ

∂σ

∂ξ
, (3.15c)

as β → 0, ξ → −η, −η 6 ξ 6 0, where uτ ∼ ui + βu1 + · · · and σ ∼ σi + βσ1 + · · ·.
We are interested in the behaviour of ω0, which may be thought of as β evaluated

at ξ = −η = Ca ln ε. When ui 6= −1, the usual behaviour, ω0 ∼ (18Ca ln(ε−1))1/3,
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Figure 4. As figure 3 but for Θi = 0◦. Dashed line: boundary for existence of steady solutions.

prevails. However, when ui = −1 the leading term of the Taylor series for β, equation
(3.15b) vanishes and the apparent contact angle depends on a different power of Ca:

ω0 ∼ [12u1σ
−1
i Ca ln(ε−1)]1/2, (3.16a)

where

u1 = ± (−σi/3γΓi)1/2. (3.16b)

Thus, since the Marangoni number M = γ/Ca, we may write

ω0 ∼ [12(−γ/3σiΓi)1/2(−M)−1 ln(ε−1)]1/2. (3.17)

Thus, when ui = −1, the Marangoni effect plays a role in the dynamic contact angle,
in qualitative agreement with the result of Joanny (1989). Equations (3.16) and (3.17)
imply that, in order that ω0 be real, u1 > 0. Finally, equation (3.15b) suggests that,
if β > 0, σi > 0 and ξ + η > 0, then at the edge of the inner region ui > −1. This
condition indicates that, at steady state and when Θi = 0, the transfer ratio cannot
exceed unity.

3.6. Receding contact angle: Θi = 120◦

Figure 5 shows the receding contact angle for various surfactant transfer fluxes from
the solid to the interface, Γs < 0. For this case to occur, surfactant adsorbed on
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the solid must be able to desorb onto the interface as the solid emerges from the
liquid. This may happen for instance if the adsorption and desorption took place
in two different liquids having respectively less and more affinity for the surfactant
than the solid. For small Γs < 0 the receding contact angle decreases monotonically
with −Ca ln ε until it reaches zero. This is consistent with the general behaviour
of receding motion. However, when Γs < Γcrit

s < 0, a range of Ca ln ε develops
where two contact angles appear for each Ca ln ε. At first the receding angle still
decreases to zero (Γs = −0.8), but, for sufficiently large |Γs|, ω0 remains above a
minimum. The lower branch where the angle increases with −Ca ln ε is probably
unstable.

The explanation for the change in behaviour is found by examining the interface
shapes and surface tension profiles near the turnaround, point B in figure 5(b). From
A to B to C, the initial surface tension σi decreases monotonically. Figure 6 shows
that the end point σ = 1, which determines the value of Ca ln ε, increases from A
to B but decreases from B to C. The reason lies in the coupling between equations
(2.11a, b). When σi is small (0.1 in the example) β decreases initially very rapidly by
equation (2.11a). This raises the shear stress so much that the growth rate of the
surface tension overtakes the cases with larger σi. By the time β decreases less rapidly,
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σ is too close to 1. Consequently, for σi small enough, the end point σ = 1 is achieved
at a smaller −Ca ln ε.

3.7. Suggested method for measuring ω0

Assuming that we can optically image the interface in the region described by equation
(3.6), and since Γs and γ are both known by independent measurements (Γs can be
found from L(t) = Lini−Γst, where L(t) is controlled so as to keep the surface tension
constant in the outer region), ω0 could be measured (and the theory tested) by a
process similar to that used for pure fluids (Dussan V. et al. 1991). This process
uses ω0 as a fitting parameter that minimizes the square differences between theory
(equation (3.6)) and experiment. Of course, merely minimizing this square difference
does not guarantee that a ‘good’ value of ω0 has been found. Another necessary
condition is that the data be uniformly scattered around the best fit, i.e. that no
systematic deviations be present (Marsh et al. 1993).

4. Can surface diffusivity allow surfactant transfer?
In this section we analyse a model for the inner region where slip on the solid

alleviates the stress singularity and surface diffusivity, Ds, on the interface allows



Spreading of surfactant-laden liquids 227

surfactant transfer. In order to allow analytical treatment, we assume that, in the
inner region, the interface slope relative to the solid is small so that lubrication theory
may be used. Scaling arguments, not subject to small-slope limitations, are shown in
the Appendix. In this section we use x, y Cartesian axes with x along the solid and
y perpendicular to it and into the liquid. The solid is at y = 0 and the contact line
position is (0, 0).

The evolution equations for Γ and the interface height h vary according to the slip
model chosen. For example, by prescribing a slip velocity with characteristic length λ
in dimensional form as u|y=0 = Ux/(x+ λ) (Dussan V. 1976), and using length scales
h ∼ λCa1/3 and x ∼ λ, the dimensionless evolution equations are

x̄

x̄+ 1
+ σhxxx

h2

3
+MCa1/3Γx̄

h

2
= 0, (4.1)

Γ

[
x̄

x̄+ 1
+ σhxxx

h2

2
+MCa1/3Γx̄h

]
− Γx̄Pe−1

s + Γs = 0. (4.2)

The boundary conditions are

h = 0, dh/dx̄ = φ at x̄ = 0; h→∞, dΓ/dx̄→ 0 as x̄→∞. (4.3a–d)

Subscript ‘x̄’ denotes differentiation; M = γ/Ca < 0 is the Marangoni number,
Pes = Uλ/Ds is a surface Péclet number and λ plays the role of Li. Both Pes and
MCa1/3 are O(1) as Ca→ 0. The surfactant concentration on the solid, Γs, represents
the dimensionless surfactant flux. We further assume that Γs is linearly related to
the concentration on the free surface next to the solid, i.e. Γs = kΓ (0), where k is a
adsorption rate constant, and that σ = 1 + γ(Γ − 1).

4.1. Transport: small-x̄ behaviour

In order to investigate how slip and surface diffusivity affect the surfactant transport
at the contact line, we first examine the small-x̄ behaviour of equations (4.1) and
(4.2). We assume that, for x̄� 1, the variables may be expanded asymptotically as

h ∼ φx̄+ (b+ bL ln(x̄))x̄2 + (c+ cL ln(x̄))x̄3 + · · · , (4.4)

Γ ∼ Γ0 + Γ1x̄+ Γ2x̄
2 + · · · , (4.5)

where φ ≡ θ/Ca1/3 = O(1) as Ca → 0 and θ is the (small) contact angle. By
substituting these expansions into equations (4.1) and (4.2), we find:

1 + 1
2
φΓ1MCa1/3 + 2

3
φ2bLσ0 = 0, (4.6)

−1 + 1
2
M[bΓ1 + 2φΓ2] + φ2[ 2

3
bLΓ1γ + σ0(2c+ 11

3
cL)] + 4

3
φσ0 b bL = 0, (4.7)

1
2
MbLΓ1 + φσ0(4b

2
L + 6φcL)/3 = 0, (4.8)

Γs − Γ1Pe
−1
s = 0, (4.9)

Γ0(1 + φ2bLσ0 +MCa1/3φΓ1)− 2Pe−1
s Γ2 = 0. (4.10)

Since mass is conserved at the contact line, the diffusive flux, Γ1, is fixed by Γs and
Pes in equation (4.9). The adsorption constant k then determines the concentration
level Γ0. Qualitatively similar results arise for the slip models of Navier (Goldstein
1965, pp. 676–680) and Greenspan (1978).
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Thus, the details of the slip mechanism do not affect whether or not transfer takes
place. Slip regularizes the stress by making the fluid velocity zero at the contact line,
but this necessarily causes the surface concentration to blow up at the contact line
if transport is purely convective. The only exception is the special no-transfer case
analysed by Cox (1986b). In all transfer cases surface diffusivity has the double effect
of relaxing the concentration growth rate and providing a mechanism of surfactant
transfer.

4.2. Large-x̄ behaviour

In order to connect the lubrication analysis to the model posed in § 2, we extract
large-x̄ asymptotic behaviours for equations (4.1) and (4.2). As in other lubrication
models of advancing liquids, there are two possible asymptotic behaviours. In the
first one, the interface height grows quadratically,

h ∼ Ax̄2 + Bx̄+ C,

and the surface concentration approaches a constant,

Γ ∼ Γ∞ + 2(MCa1/3Ax̄)−1(2Γs/Γ∞ − 1) as x̄→∞.
This behaviour may be matched to a static outer region at low Ca, where the surface
concentration is independent of position at lowest order in Ca. The second behaviour
is logarithmic, and may be matched to the intermediate region of § 2. The logarithmic
large-x̄ behaviour of the inner solution, with both x̄ and h̄ made dimensionless by
Li = λ (i.e. hCa1/3 = h̄), is

h̄inner ∼ x̄[18Caσ−1
∞ (1− Γs/Γ∞) ln(x̄)]1/3, (4.11)

Γinner ∼ Γ∞ + (MCa)−1( 3
2
σ∞)1/3(1− Γs/Γ∞)−1/3(1− 2Γs/Γ∞)(Ca ln(x̄))2/3. (4.12)

The variables, Γ∞ and σ∞, are related by the equation of state for the free surface,
(2.5). Since these expressions are independent of Pes, mass transfer occurs only by
convection at large x̄. The interface slope is asymptotically β ∼ h̄/x̄ as x̄→∞:

βinner ∼ [18Caσ−1
∞ (1− Γs/Γ∞) ln(x̄)]1/3. (4.13)

These expressions should match to the intermediate region solution for Θi = 0. We
write the intermediate solution in inner variables, and expand in Taylor series as
Ca → 0 holding r/ε fixed. In this limit, β → 0 so we may replace r/ε by x̄ to a first
approximation, to yield

βinterm ∼ (18(1 + ui)σ
−1
i Ca ln(x̄))1/3, (4.14)

Γinterm ∼ Γi + (MCa)−1( 3
2
σi)

1/3(1 + ui)
−1/3(1 + 2ui)(Ca ln(x̄))2/3, (4.15)

where ui and Γi are unknown constants to be determined by matching. Recall that
Γi and ui are the initial values of surface concentration and interface velocity at
ξ = −η (= Ca ln ε) in the intermediate region.

By comparing equations (4.12) and (4.13) to (4.15) and (4.14) we find values for
the integration constants:

Γi = Γ∞, (4.16)

σi = σ∞, (4.17)

ui = −Γs/Γ∞. (4.18)
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Equation (4.18) simply expresses the mass balance between the transferred flux, Γs,
and the convected flux in the no-diffusion region, Γu.

In order to relate Γ∞ to the parameters of the problem, we solve for h̄ and Γ by
integrating (4.1) and (4.2) with boundary conditions (4.3a, b) and

Γ = ΓCL at x̄ = 0,

h ∼ x̄[18σ−1∞ (1− Γs/Γ∞) ln(x̄)]1/3 as x̄→∞.

}
(4.19)

The method consists of solving an initial value problem for given φ, MCa1/3, Pes,
Γs and ΓCL, with the condition at infinity replaced by d2h/dx̄2 = b at x̄ = 0. The
value of b is varied until the behaviour (4.19) is obtained. Figure 7 shows results of
a partial parameter search where ΓCL determines the possible surface tensions to be
passed on to the intermediate region for φ = 1, MCa1/3 = −100, Pes = 1/40. Clearly,
to each Γs correspond values of Γ∞ and σ∞. By (4.17), σi is then fixed. However, the
intermediate-region dynamics dictates the allowable ranges of σi for steady solutions.
Thus, only material systems which can deliver surface tensions σi in these ranges will
exhibit steady solutions.

5. Conclusions
We have identified quantities describing the macroscopic interface shape in a

spreading liquid with an insoluble surfactant for the general case of surfactant ex-
change between the fluid–fluid and the solid–fluid interfaces. One of these quantities,
which plays the role of an apparent dynamic contact angle, depends primarily upon
parameters of the inner region. In this respect, the surfactant problem behaves anal-
ogously to the surfactant-free case. However, the surface concentration in the outer
region (a variable that an operator can control and which dictates the concentration
of surfactant in the inner region) indirectly affects the actual and the apparent dy-
namic contact angles. In this respect, the problem of spreading with surfactants differs
significantly from the surfactant-free case where actions taken in the outer region do
not affect the dynamic contact angle passed on to the outer region.
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The contact-line singularity that has been widely examined in surfactant-free sys-
tems reappears with vengeance in systems with surfactants. Cox showed that, when
surfactant does not transfer to the solid, i.e. it remains ‘captive’ on the fluid–fluid
interface, the singularity may be removed by the same mechanisms as in surfactant-
free systems. Chief among possible mechanisms is the assumption that fluids slip
along the solid very close to the contact line. However, when surfactant transfers
only by convection at the contact line, slip cannot remove the singularity because in
doing so it would annihilate the surfactant transfer. Additional mechanisms such as
surface diffusivity must be present. Alternatively, transfer may be accounted for at
the interface level by assuming appropriate ‘interphase’ models where the ‘interphase’
region with the surfactant is modelled as an anisotropic three-dimensional phase,
much in the spirit of Shikhmurzaev. Postulating that surface diffusivity accounts for
the transfer does lead to a well-posed boundary value problem – at least in the limit
Ca � 1, ULo/Ds � 1. If one wished to define an effective surface velocity for the
surfactant, ueff ≡ Γ−1(−Ds∇IIΓ + Γuτ), one could define a slip coefficient at the
interface, λ ≡ (ueff − uτ)/τw , where τw is the shear stress at the free surface. Thus, it
may prove difficult to distinguish between slip and surface diffusivity in an experiment
unless these parameters can be independently characterized.

We derive matching conditions between the intermediate region and the outer and
inner regions. The matching conditions may be used as boundary conditions for
the solution of (2.11). One of these conditions fixes the interface slope; the other
one fixes the surface tension. If the conditions are applied at the overlap between
outer and intermediate regions, then they specify the apparent dynamic contact angle
and the outer surface tension. In surfactant-free systems matching also provides the
initial condition for the interface shape in the form of a dynamic contact angle; but
because a closed-form solution exists for the shape, the contact angle is incorporated
directly in the analytical solution. Though the macroscopic dynamic contact angle is
ultimately determined in some complicated way by material parameters of the inner
region, our approach hinges on measuring the dynamic contact angle experimentally
rather than computing it from the inner parameters on which it depends.

For small transfer rates, Γs, we have identified relations between inner material
parameters and the quantities characterizing the outer region. Because an analytical
solution for arbitrary Γs is not available, we cannot identify, for arbitrary Γs, macro-
scopic parameters depending only on combinations of material properties, as has been
done in the surfactant-free problem. For the special case Γs = 0 an exact solution exists
and these combinations are expressed in equations (3.12). For arbitrary Γs, even the
possibility of identifying such relations is not at all obvious; generalizing the theory for
arbitrary Γs is a pending – perhaps impossible? – task. Nevertheless, it is possible to
measure the macroscopic quantities ω0 and σm0 at any Γs and, should these measure-
ments be successful, model the macroscopic dynamics of the spreading process.

We also examined the dynamics of the intermediate region. The behaviour of the
apparent contact angle versus Ca ln ε is much richer than that of the no-surfactant or
the no-transfer surfactant cases. These results suggest that, for some transfer rates,
some apparent contact angles may not be reachable no matter what the value of
Ca; steady solutions may fail to exist in certain ranges of Ca, and that hysteretic
behaviour may develop during increasing–decreasing Ca-advancing cycles.

Finally, we proposed an approximate inner model where slip removes the stress
singularity and surface diffusivity effects the surfactant transfer at the contact line.
As with all small-slope models, Θi = 0 because the slope is vanishingly small when
seen from the large macroscopic length scale. Using the matching conditions between
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the inner and intermediate regions derived in (3.1), we provide initial conditions for
the intermediate region based on the dynamics of the inner region. We found that, in
order for a steady state to develop, the inner-region parameters cannot be arbitrary
but their ranges must meet certain constraints.
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for insightful and stimulating discussions. Finally, I am grateful to two anonymous
reviewers for their critical comments and suggestions.

Appendix
We consider the inner-region flow in a straight wedge, with an insoluble surfactant

on the free surface. The inner length is the slip length λ. The inner model is the
same as in § 4, except that the interface is assumed flat and its location is φ = α,
with α = O(1). For simplicity we do not consider interface deformation; therefore,
we do not satisfy the normal component of the dynamic boundary condition at the
free surface. Because the discussion is not limited to small slopes, the small-slope
approximation cannot be used to make analytical progress. Instead, we look for the
scaling behaviour of the solution near the moving contact line and at large distances
from it.

All lengths are made dimensionless by λ, concentrations by Γ ∗, and velocities by
U. In the inner region the flow (assumed steady) is Stokes’. The boundary conditions
are
surfactant mass

−Pe−1
s dΓ/dr + Γu = q on φ = β, (A 1)

where the surfactant flux, q, is a constant;
tangential stress

dΓ/dr = M−1(1/r)∂u/∂φ on φ = β; (A 2)

slip at the solid wall (we assume a prescribed velocity à la Dussan V. (1976))

u = r/(1 + r) on φ = 0. (A 3)

At the contact line, all the surfactant transported along the free surface must be
removed by the solid after being adsorbed on it. This mass balance is expressed as
Γs = q. The adsorption isotherm gives the solid concentration as Γs = kΓ0 at the
contact line. Since q = Γs by mass conservation, it follows that q = kΓ0.

Behaviour as r → 0

If we assume

Γ ∼ Γ0 + rΓ1 + r2Γ2 . . . and u ∼ ru1(φ) + r2u2(φ) as r → 0,

it is found upon substitution in (A 1)–(A 3) that

du1/dφ = −MPesq at φ = β,

Γ1 = M−1du1/dφ at φ = β,

u1 = 1 at φ = 0.
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From the linearity of Stokes’ flow, the last two equations imply

u1 = f1(φ) + qM Pesf2(φ), (A 4)

where df1/dφ(β) = 0 and df2/dφ(β) = 1; f1(0) = 1 and f2(0) = 0. The structure
u ∼ r is independent of the slip model chosen. Only the coefficient functions f1 and
f2 change upon a change in slip model.

The surface concentration behaves as

Γ ∼ Γ0 − rqPes,
where Γ0 is undetermined and must be found by matching to the outer region where
the concentration can be controlled. Since q = kΓ0, it follows that

Γ ∼ Γ0[1− rkPes] as r → 0.

From dimensional considerations, we conclude that all the powers rn must be pro-
portional to Γ0, so that

Γ/Γ0 = f(r, k, Pes).

At the next order, the expansions give

Γ2 = − 1
2
PesΓ0u1(β) and du2(β)/dφ = 2MΓ2.

Therefore,

du2(β)/dφ = −2MPesΓ0u1(β)

The convective flux is qconv = Γu ∼ rΓ0u1(β). Thus only diffusion is present at small r.

Large-r behaviour

We now examine the large-r behaviour, corresponding to the physical distance
being much larger than λ. Since, in this limit u ∼ 1 on the solid, both con-
vection and diffusion have the potential to be important. From (A 1) and (A 2),
∂u/∂φ = −MPesr(−Γu + q). This shows that, as r � 1, Γu → q. This state-
ment implicitly assumes that ∂u/∂φ remains O(1) as r � 1; we will justify this a
posteriori.

By the same reasoning, integration of (A 2) gives Γ → C1+M−1∂u/∂φ ln(r) as r � 1.
This, in turn, when combined with Γu → q, implies that, to lowest order in Ca,
u → q/Γ = C2 as r � 1. Since both u and Γ approach constants as r � 1, the
problem for the velocity and concentration fields may be matched to the problem
we have solved in the absence of diffusion, i.e. when Pes(Lo/λ) � 1, outside the
inner region. Now we can justify the assumption that ∂u/∂φ = bounded as r � 1:
since u(β) → C2 on the free surface, and u(0) → 1 at the solid, it follows that
∂u/∂φ ∼ (C2 − 1)/β as r →∞.

This analysis shows that a slip region with surface diffusivity such that MPes = O(1)
allows flux, q, to be specified externally. The model accounts for surfactant flux at
r = 0, while it recovers the no-diffusion behaviour when r � 1. For this discussion we
have assumed that Pes = O(1) as Ca→ 0, which together with MPes = O(1) implies
that M = O(1). This ordering is the same as that found in the small-slope analysis
of § 4, where MCa1/3 and Pes are both O(1), except that Ca1/3 (which denotes the
ratio of vertical to horizontal length scales in lubrication theory) is here replaced
by 1.
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